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Synchrotron sideband resonances of a first order spin resonance are generally regarded 
as the most important higher order spin resonances in a high-energy storage ring. Yokoya’5 
formula for these rzsonancr~ is rederiyed. including some extra terms: which he neglected, 
but which turn out to be UT comparable magnitude lo the terms retained. Including these 
terms. Yokoya’s formalism and the S.\IILE algorithm are shown to be equivalent to leading 
order in the resonance strengths. Thr theoretical calculations are shown to agree with certain 
measurements from SPE.&R. 

1 INTRODUCTION 

Synchrotron sideband resonances of a first order spin resonance are generally regarded as 
the most important higher order spin resonances in a high-energy storage ring. The problem 

has previously been treated by Yokoya. “I M ore 

order spin resonances has been developed,‘2’ 

recently, a formalism for arbitrary higher 

which includes synchrotron sideband resonances 
as a subset. Although both formalisms use perturbation theory, the terms are summed in 
different ways, and the results look quite different. 

However, we shall show below that the two formalisms are equivalent, subject to certain 
caveats which will be described below. In particular, we shall rederive Yokoya’s formula. 
We find that there are some extra terms, which he neglected, but which turn out to be of 
comparable magnitude to the terms retained. These terms are already present in the SMILE 

formalism. We also fit the results to some data from polarization measurements at SPEAR,‘31 
and obtain reasonable agreement for some resonances. 

‘To bc prc.ented a, the 8’I htcmationd Sympo,ium on High Energy Spin Phr,ic.. Univcr,i,y of Min,,e,o,., scp, 12 - ,,, 

1888. 
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The polarization is calculated using the Derbenev-Kondratenko formula’4- 

PC4 = JL 
(~pf3 i~.[fi-~~]) 

5d3 
(:p -q1 - ;(h.c)’ - E $‘]) 

(1) 

Here 21 is the particle velocity, b E F x t?/,C x S, p is the local radius of curvature of the 
particle trajectory, fi is the spin quantization axis on the particle trajectory: and the angular 
brackets denote an equilibrium average over the distribution of particle orbits and the ring 
azimuth. The direction of the equilibrium polarization vector is Peq : (ti>. Both Refs. il] 
and :‘2j calculate li perturbatively, in ways to be described below, to evaluate PCs. 

2 YOKOYA’S FORMALISM 

2.1 SOLUTIOh’ FOR ti 

The notation and formalism below will mainly follow Ref. jl:. The ring azimuth is denoted 
by 8. The horizontal betatron coordinate and energy offset of the particle are 

‘9 = t!21,, cos(ti, - G=(e)) 

t = bi2I: cos2’; (2) 

where {I,,c:;.j =: z.2) are action-angle variables. and %,(S) is the periodic part of the 
betatron phase advance. 

(3) 

where R is the awragr ring radius. The horizontal betatron and synchrotron tunes are called 
0, and 0.: respectively. in this note. The equation of motion for the Derbeyv-Kondratenko 
ii axis is 

~+7,-+6. (4) 

Herb 6, is the spin precession vector 011 the closed orbit and ~2 is the contribution of the 
orbital oscillations (2 = 0 on the closed orbit). IYe write 2 = z& - r.2, to denote the 
couplings to the horizontal betatron and synchrotron oscillations, respectiwly. \Ye express 
ti in the form 

iL(I,.L~,.I;.~~;16) = ilo\. - < - - Re(c;() ~ (5) 



where & and & are both solutions of Eq. (1) on the closed orbit. and 

rqo - 2T) = qe) 

io(S - 2a) = ei?&(ej (6) 

Here II is the spin tune. The equation of motion for C is 

4 
a= 

-iG.&bfi - i.2,fio( 

1Ve approximate b/Z z 1 and t,hen solve for C: which yields 

c = -g’x(@) 
J 

@ dt9’ e’X(B’)Z.io(6”) : (8) -wz 

J 

e 
x=- 2.f~ d0’ (9) 0 

The contributions of rapidly oscillating terms in y are neglect,ed. and only s?nchrotron 
oscillations are retained. i.e. ;i.riO z EZ~.&. In this contest. we approximate 0, < 1. \Ve 

also define lie = :,a/Q,. Then 

1 z \,‘E u, sin y’; (10) 

Lsing the relation 

tll rin c _ 
2’ PC.&(T) (11) 

m=-uz 

we obtain Ihkoya‘s result 

( = c->‘( 2 [Xm(,B) - c ,~~e=‘(~~-~.)B,,,.(8)]~‘“w.J,(\i~Tu,) 
rn-cc UC 

(12) 
z 

-z;t-‘“Q.~ 

J 

8-?r 
.-r,(s) = 

ttZnll,-mQ,) ~ 1 B 
,‘“Qd’& do’ 

iiZ.-Q.Ol-ilTlQ,B 

B,,=,(flj = p(i’2)‘= 

J 

8-h 

(f 
~w~~=Q*-d!s) ~ 1,4x e 

t=;(~.-Q.8’)-imQ.8’~~_1~,~~ dfj’ (13) 

2.2 RESONANCE HARRIONICS 

The term in .4, describes synchrotron sideband resonances centered on an integer. whereas 

the turns in B,,=, describe synchrotron sideband resonances around the betatron resonances 
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v 2 n = Qr = 0: respectively. \Ve shall focus on satellites of a betatron resonance, say 

Y + R - Qr = 0, so we neglect .a, and B,,,. M’e also keep only the harmonic closest to the 
resonance in I?,,-,, i.e. 

B,,-, = 8, = -A 2 F 1/ _ ,, y;;; mQ, e-iy+y 

r 

1 b ,-&+i(,*,)e 
1 

2Ytn-QQ,TmQ. J3; 
(14) 

2.3 SOLUTION FOR ~(hij8y) 

xext, we want aC/ac, to get ?(LXjay) in Eq. (1). Note that:‘: 

;[L,hxe+‘(‘*-y = -7. = i(&?, I q,cr,) 

&[J&&‘““.] = ;[J,-l(fiu.)ei(- - J,~,(t~,p-w] . (15) 

hence 

a< _ 
ac 

e+$, B~(e,[~(~~~~-'("*-3*1)~~(~~~~.jt~mu. 

-~t-i(~~ti~)~(J,(~i'~u.),im,.)] (16) 

yokoya neglected the second term: but we shall retain it. .Aft,er Eq. (3.6) in Ref. 1 i it 
is stat.ed that “we have neglected the terms which are proportional to betatron oscillation 
amplitudes after differentiation.” L-sing Eq. (IS), 

aC _ 
ac -ix ,z, h(o) [(-vz - i(dfL - wzj)Jm(,i~u<)timY~ 

+ \l’21,3,t ~ -i(F.-Vr)~(J__l(~~li.)Ci(m-l)~. 

-J,_,(,,~~~)Ei(m-l)~, )I 
f e-- f C,(d).Jm($Gr)eim~~ 

m=-a 
(17) 
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2.4 ENSEMBLE AVERAGES 

Averaging over the synchrotron oscillations, assuming a Gaussian distribution. 

ai ,2 
(- ) = ac ,g, G(8) ? J,- $ EdwJ~(~5& 

= 5 C,(8)~2EPIm(a) : 
(18) 

m=-az 

IThere a = (1,)~: = l I,)(~a,‘Q,)‘. I!‘e ~SO need to average o\‘er the betatron orbits in c,. 
From Eq. (17) 

(19) 

For brevity. put C = V-R - 0,. \Ye shall consider the terms proportional L121,~, later, but 
neglect them for now. Then 

,C,(B) ? 5 (7): f (T&3* 2 7j*a,)2) Ems2 

= 1’7: - (7% - %a,)’ b ? 
i 3, (E-7@,)* 1 

and so 
1’71 - (dJ* - wb)’ = 

-1 
b 2e-uJ,(a) 

0, m=--oi is- mQ.)Z : 

(20) 

(21) 

which agrees with the expression for ’ ?(ai,‘a>) ‘- in Eq. (3.18) in Ref. :l: 

2.5 ADDITIONAL SPIN INTEGRALS 

Sow let us include the extra terms: which 

so. note that.‘: 

are pmportional to ,f’?izx in Eq. (19). To do 

C,8 E 7: - iuz ~- ‘I*4 
3, 

\vhere ,,. .)e denotes an average around the ring circumference. C, = 55!(32&)h/(mc) = 

3.84 x lO-‘3 m: po is the bending radius of the closed orbit. ,. is the average electron energ) 



in units of mc*. and J, and J, are the partition numbers of the synchrotron and betatron 
damping constants. For brevit?. define h’ = C~~~/(i~oj-‘)e. Then, averaging over both the 
orbital action-angle nriables and the ring circumference, 

( 1 a6 2 
>,'a7 ) #,otbitn = ~a,.,,,,. 

= g r-“I,(a)[R-lJ,~,o,8~B, 2 - r,oK-‘J.t,$ 

,z x (!PJB,_,, 2 PhL-~,2 - 2Re(&&&))] (23) 

FVe neglect the cross term Re(3,B,-1B~_,) b ecause it is not as singular as the other terms, 
and so 

1 anzz 

(- p,3 ,?a?, > 
= y F ,P[J*:&, 2&,(o) 

m=--T 

[Urn(a) - J+(a) - L(Q))]. (24) 

One of the feature of the abow result is that because Lm(o) = Im(a), the terms in m and 
-m haye the same strength. This can be verified by substituting n + --m in Eq. (24). 
Thus Eq. (23) predicts the polarization should be symmetric about the first-order “parent” 
resonance. ‘The inclusion of less singular terms. which haw been neglected in the above 
derivation. will change this symmetry. 

2.6 ENHANCEMENT FACTORS 

2.6.1 Sidebands with m > 0 

Let us now consider on]>- the terms for which m 2 0 in the above sum. These are the 
sidebands v = n - 0, - Q*. u = n, - 0, - 20,. etc. \Ve shall return to the m < 0 terms 
later. L-sing the relation 

ct(J*-1(Q) ~ J,-,(a)) = 2mI,(a) . 

Eq. (24) can be witten in the form 

(25) 

t 

1 a~fi 2 
-?- 
p3 a? > 

~~ K-,csLic c ,b’ 

-- m 4(E-mQ,)2 
[.a40 j - J,(d,(a) - CA-,(O))] 
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‘b12 

(6 - mQ8y 

IYe can write the above result as an “enhancement” of the parent resonance 

1 ( ali” 
-iy- 
;P,s, a7 1" order 

The first-order result is 

Hence. for the m > 0 sidebands, 

F rn>o = g=[lT k(m + QIT:;h;))]~-“‘-(~)cs,~4,j? 

Using the asymptotic relations 

Jmi~) ^- (;,“-$ (Q<777): 

En 2 
&G 

(a > m): 

(29) 

(30) 

we see that the term in al,-, 11, is important only if a >> m 

2.6.2 Sidebands with m < 0 

For the sideband resonances I,-ith m < 0 in Eq. (2-11, the enhancement factor is 

F m<o = e [l- $(-mi ~J;~;$))j~-Ymi~)(6 & 
m=--T. 

= g1- ;(m - oJ;~;~))]E-rw)(o & 

The two enhancement factors are equal. as expected because the two sets of resonances have 
equal strength (see the statements below Eq. (21)). 

2.6.3 Combined results 

\Ve can combine thp above results into one factor 

F = 2 [I - $( m - aiI~m~f~))]~-c’Im (a)(, -$.,> 
ln--3i 

(32) 



A similar. but, slightly different. theoretical formula has been reported in Ref. i61: but without 
derivation. and only for the m > 0 sidebands. It is also convenient to write 

FE F 
ii,.; 

m=-m (E? mQ,)Z 

If the resonances apf well separated, then it can be shown that the width of the resonance 

6+mQ,= 0 is proportional to Wvm. In particular, the ratio of the width of the sideband 
resonance E-n&. = 0 t,o that of the parent resonance 6 = 0 is equal, not merely proportional, 
to H’m/ll.O. This result is not true, hoverer, if several terms in the above sum contribute 
significantly to the width of a given resonances i.e. if the resonances overlap. 

2.7 NUMERICAL ESTIMATES FOR n 

At this point, let us estimntr the value of a E ~,(ru/Q.)’ f or various rings. \Ve obtain the 
value of t, using Eq. (22). For SPEAR at the horizontal betatron resonance Y = 3 + 0,: 
E = 3.65 Ge\-. and p0 2 12 m: and we put .I, = 2. From the data in Ref. !3), 0, 2 0.035. 
For HER.%. \rr us? thr nlues E = 30 Gel-, p = 600 m. J, = 2 and Q. = 0.06, and for LEP 
\re assume E = 3~ Ge\-: p = 3000 m, J< = 2 and 0. = 0.1. The values of c, and D for these 
three models are given in Table 1. \Ve see that u < 1 for SPEAR. but is approximateI! 
unity for HER.-\ arid LEP. 

Table 1: Numerical estimates for (I,) and LI 

Ring I c(= (Jz)) a 

SPEAR 1 8.2 x lo-’ 2.8 x 10-Z 

HERA j 1.1 x 10-e 1.42 

I LEP 6.1 x 10-7 0.79 



3 SMILE FORMALISM 

3.1 SOLUTION FOR li 

In this section the SMILE formalism’2’ will be used to derive the above result,s. We need 
only consider sidebands with m > 0. In Ref. !2]: the orbital motion is written as a sum of 
eigenvectors but here we shall write 12 = z+Z-, - G, instead. and now we put 

zcg = a,& - C.C. : t = a,c- C.C. (34) 

where 
a, = & ti(~z-Q.e) 

zs = \/$,i(Q.r-i.1 ;z 
,iQ.S 

7T’ 

(35) 

\Te decompose 
ii = nllo - n2rno -“3&l (36) 

in terms of a right-handed orthonormal basis {io:r.+,:fio} of solutions of the ‘Thomas-BMT 
equation on the closed orbit. and we define 

,. 
1 

= _=I -in? 1; ==l-l% 

v;iz : ’ Y5 
1; =n3. (37) 

Then i,, = i, - i+o and 5 = -J/‘Zl;. The solution for fi is given by a time-ordered 

exponential~2: 

(:_; =T[exp[$xdO&+-‘] ; I)) i (38) 

whrre .? is a vector of spin 1 angular momentum matrices. ‘To obtain a practical solution. 
we expand the above exponential in a power series and sum the terms order by order. 

3.2 SYNCHROTRON SIDEBAND RESONANCES 

The aboye exponential contains all combinations of spin integrals. but to get the prwious 

solution for C (Eqs. (6) - (9)). me consider only the terms with z.Z,.& at first order. followed 
by powers of GC.jLO, the coupling to the sqnchrotron oscillations: i.e. 

< zz -$jr; > -i 
J 

e 
dO’x~,.k, 

-cc 



I 

8’ 
de” zG* .I$ 

-m 

J 

e 8’ 8” 
-i de’ CL&.& 

J 
de” El& .iLo 

J 
de”! - - ;rW,.k~ 7 (39) -m -cc -cc 

Eq. (38) also contains terms of the form 

(2J de’ cl&. & 
B” 

DC I 
e’ de”‘rLz,& - 

-n? 
de”E&.Q / 

-m (40) 

i.e. terms involving G..& rather than Y‘..&: as well a.~ other terms. Let us now evaluate Eq. 
(39) term by term. As before: we approximak 

e-~‘Q.8+“,);51jr~~o ^- be++“-Q.)@ _ be’68 
(41) 

and. from above. we approximate r.Zc’,.ko z ~ Q,u,~costi, because 0. < 1. Let us now 
rrite i = cI - C2 - [3 T .: where cn is the nfh term in Eq. (39). Then 

J 

e 
& = -iaz4 Z&i& do’ 

--a; 

\I’e also need the results, which can be derived from Eq. (15): 

aa’ 
= q&e -G.-Q.e)) = -‘I= - i(40, - QQ5) 

at - aE J23; 

3.3 FIRST ORDER 

To first order. 

and 

l 1 ati ,? -,--’ = 
P 3: a?! > l 

1 :a<, 2 -- 
pi3 ac > 

(42) 

(43) 

(44) 
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in agreement nith the previous calculation. 

(45) 

3.4 SECOND ORDER 

At second order. 

i6a’ de’ + . (46) 

\Ve have neglected the term which gives the resonance 6 - Q. = 0, because we are only 
considering sidebands E T mQ, with m > 0. Using the approximation for &.& given above, 

[z 1 -a:D&&i lem %,i(6+Q.)@ de’ 

Then 

zz , 4 Qau, E~(~-Q.I~ 

aro &v ac v5 6 - Q. (47) 

(48) 

and 

iaa, 2 b2 (0.~) 19 - at z 4(C - Q*)Z 

= hYzjJ,g - zIi-‘r,&(,J, - & (O.U<)? 
46’ A(6 -~ cl.)’ (49) 

Recall thr expression for the enhancement factor F in the previous section could be written 
in the form 

F= c 
II-; 

mT--3i- (6 + mo,)2 (50) 

L-nlike Eq. (50). the sum in Eq. (49) cannot be separated into terms with distinct reso- 
nance denominators 6 - rnQ,. The higher order terms also contain Iowzr order resonance 
denominators. Thus the second term has both &’ and (6 - Qe)’ in the denominator. This 
gives a correction to the first order resonance strength of U(e,u:) = 0(a). In the previous 
calculation. this was given by the t-“1,,,(a) and aI,_,:‘I, factors. 

II 



Let us concentrate on the leading order contributions (in powers of the beam emittances) 
to the resonances. i.e. the leading power of o in 11,. From Table 1: this is a good approx- 
imation for SPEAR. It is not such a good approximation at higher energies. To obtain the 
strength of the first sideband resonance, i.e. 11;: we can approximate 6 + Q. z 0 near the 
resonance. Hence we can put E - Q. = 0 in the coefficient of (6 i Q,)-’ in the r.h.s of Eq. 

(49) 

11;’ 2 2(1- $)$ = (1 T +,q 
z 2 

Recall that in squaring and averaging y(%/r?+) in Eq. (24): the interference terms between 
distinct resonances were neglected. This w-as permissible as long as MY considered only the 
most singular terms in each resonance. JVe shall also neglect interferences between resonances 
here. From Eq. (29). 

Jr-; = 1-g l-all(ai 
i ( I( ))I - E “I,(a)O’ 

> [1 - ; (1 - ;;;,i2 
1 (I-k)$, 

and so the two formalisms agree. 

3.5 GENERAL CASE 

Let us now consider the m ” sideband 6 - mQ.. It can easily be verified that 

Cm-1 5 -a:,L - 
Q:(-Q.%)” p,i(i-mQ.)e 

t(jE 2m:2(E - Q.). (6 - mQ.) ’ 

and so 

b? (Q,uc)Zm 
“G 2m(E - Q.)’ (6 - mQ.)2 

b2 
zz ji-‘t&l*- 

: 
J, 

462 
m!rF - ,‘(“Z - lj!eY- 

JZ 1 

(52) 

(53) 

’ 2m(6 - 0.)’ _, ,(b - TLQ~)~ 
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= Prd*$ [I + rng 2m(E _ ;;;y.y- mQ,)Z (54) 

Putting 6 + mQ, = 0 in the coefficient of (E - UZQ~)-~, 

77l!dW 

= P(m - 1)‘(7n ” 2)2 12 
(1+ m$) 

* = ;;;;&+ 

= (l-m~)$. 

Once again, using Eq. 129) yields the same result 

II;;: = 
[ ( 
1 - ; m - a’;;;$))]e-v(a)i’ 

z 

z [l- $(-- ,(;I l)lj&62 z - 

(55) 

(j6) 

4 NUMERICAL RESULTS 

4.1 SIDEBANDS WITH m > 0 

4.1.1 Enhancement formula 

Fig. 1 shows a graph of polarization vs. energy measured at SPE.iR.‘3’ In this section we 
shall compare the above results with some data from this graph. specificallyy the horizontal 
betatron resonance v = 3 - 0, at 3.65 Gel‘ and its sideband v = 3 A Q, - Q.. The 
resonance widths are obtained from Fig. 2 (which is a subset of Fig. 1 containing the relevant 
resonances) by measuring the interval in which P/PO < 50%. where PO = 8!(5d3) 2 92.4$& 
\Ve find that the widths are approximately 4.1 - 6.4 Me\. for the resonance v = 3 - 0, and 
1.5 LleJ’ for the sideband u = 3 + 4?, - Qa. The values of the relevant parameters used in 
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Table 2: Resonance widths 

.r\. Resonance widths in 1le1’ 

v=3rQ, 4.1 - 6.4 i 
v-3-Q,-Q, 1.5 

B. \.alues for kib/Ir; in Fig. 2. 

Expt. 2.7-4.3 ~ 

Theory (Eq. (29)) ~ 4.9 ~ 

Theory (Eq. (21)) I 8.5 

the theoretical fit (Eq. (29)) are the same as the ones used to calculate a in Table 1. so 
v = ?a = 8.28: Q8 = 0.045, a = 2.8 x lo-‘; J, = 2 and J, = 1. The results are given in 
Table 2. The result obtained by using only Eq. (21) is also given. The second sideband 
resonance L’ = 3 - 0, - 20. could not be fitted by this method because it is 50 narrow that 
P/J’, does not drop below 50% in the experimental graph. 

4.1.2 SMILE program 

A simplified version of the SMILE program. called SUILEZ. -h’ h n 1c ca cu a es only the leading 1 1 t 

order contributions to the spin resonances (in powers of the emittances. as defined in the 
previous serlionj. was used to fit the above resonances in the data. L-sing S.\lILEZ. it is 
possible IO fit both the v = 3 - 0, - Q, and u = 3 - 0, 2Q, sidebands. ‘The result is 
shown in Fig. 3. and it also agree \rith th? data. .A model storag? ring with the approximate 
properties of SPEAR xas used to fit thr width of the first order betatron resonance. The 
widths of the sideband resonances then followed without further adjustment of the model. 

In this context, one should note that both SMILE and SMILE2 require some imperfections 
in the storage ring model in order to yield any resonances ~ they gire absolute resonance 
widths. from which the ratios of the widths of distinct resonances can be calculated. The 
enhancement formula Eq. (29) gives the ratios of resonauce widths. but not their absolute 
values. These are obtained by multiplying the ratio ll,/ 11; by the strength of the first order 
resonance. and this again requires a model of Iattic? imperfections. 
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Figure 1: Polarization measurements at SPEAR (from Ref. j3j) 
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4.2 SIDEBANDS \VITH m < 0 

Eq. (321 predicts that the sidebands with m < 0 should have the s&me widths as their 
counterparts with m > 0. This point is not mentioned in Ref. ,6 . and a formula is not 
presented for the m < 0 sidebands. There is not enough experimental data to test this 
prediction quantitatively, and in addition there are other complications. both experimental 
and theoretical. 

First, it is reported in Ref. ~3, that the polarization measurements were not all made in 
the same run: and the machine parameters. such as the tunes and the closed orbit. varied 
between runs. Thus the resonance widths cannot all be obtained from one model. Second, 
the data around the region of the sideband resonance II = 3 - 0, - 0, is sparse, and 
so the resonance width is difficult 10 estimate accurately. Even the width of the first order 
resonance u = 3 - 0, is difficult to estimate accurately. 1Vith regard to the second sidebands 

v = 3 - 0, z ‘Q,, the resonance u = 20, - 2 is close t,o the resonance 1, = 3 - 0, - 20, 

at 3.665 Gel-. so there are realI>- :,x-o resonances Ihere. and thr resonance v = 20, ~ 2 
is not treated in the above calculation. Further. many lerms haw been neglected in t,he 
above calculations such as the 1.11.~. of Eq. (XI). and tl lry are not always symmetric about 
the parent rw~nance. A few such integrals will be calculated below. to demonstrate the 

zz!-mmetr!~ of their effect on the rex~nanres E = mQ, : 0. 

The version of the SVILE program used above. callrd SllILE2. is a simplified version 
\r-hich calculates only the leading order terms considered above for each resonance. and 
also neglects interferences betwern resonances. It also predicts that the sidebands should 
be symmetric about the first ordrr~resonance. The full SIIILE program. called ShiILEl. 
includes non-leading terms as wrll. but requires much more time and storage space for its 
computations. An example of such non-leading terms is given in the appendix below. In 
addition. th? inclusion of nowleading iriregral- inlrnduces more adjustable parameters into 
thr calculation. Hence a better numerical representation of SPE.AR is required. \York on 
Ihe above matters is in progress. 

5 CONCLUSIONS 

It has been shown that l.okoya’s formulal. for synchrotron sidebands of a first order be- 
tatron rpin resonance together with some terms he neglected (Eq. (29),1. and the ShIILE 

spin integrals”’ (Eqs. (45), (52) and (56;). are equivalent. There are numerous cawats to 
the previous sta~emrnt: in particular it was assumed that 0. < 1. and only the leading 
ronlribution (in po\rers of the beam emittances:l to each resonance xas retained. The latter 
approximation is not very good for HER.1 and LEP. and so one expects that higher order 



terms are required in the power series in Ref. !2:, and the terms in Jq in Eq. (5) are 

required in the formalism of Ref. :lj. Both SMILE2 and Ref. [l] also neglect interferences 
between resonances. 

One can also show that the two formalisms yield the same result for synchrotron spin 
resonances centered on an integer. The proof requires the same approximations made for 
the case of sidebands of a betatron spin resonance: and involves similar calculations, hence 
it will not be shown explicitly here. 

The formula Eq. (29) was used t,o fit certain data from SPEAR polarization measure- 
ments. specifically the ratio of the widths of the resonances v = 3 2 Q. and v = 3 + Q. - Q.. 
It was also shown that the SMILE2 program could fit the above resonances. including in 
addition the v = 3 + Q, - 20, resonance. However1 the above theoretical formulas also 
predict equal width for t,he resonances v = n + Qz = mQsr but the experimental data do not 
necessarily support this conclusion. The full SMILE1 program can handle this case in prin- 
ciple [i.e. a more comprehensive range of spin integrals, and including interference terms 
between integrals). but a more detailed knowledge of SPEAR is required. in particular a 
more detailed model of the lattice, and a more sophisticated model of lattice imperfections. 
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A ADDITIONAL SPIN INTEGRALS 

Here we shall calculate some additional spin integrals which wzre neglected in the main text. 
The goal there was to prove the equivalence of the formalisms in Refs. iI] and 121. The 
approximations in the main text (the neglect of various spin integrals) led to the prediction 
that the resonances E = mQ. = 0 should hare equal width. Here we shall show that some of 
the terms which were neglected above can cause the resonances 6-mQ. = 0 and S -mQ, = 0 
to hare unequal width. The terms considered in the example chosen below come from the 

t/= factor in Eq. (5). 

Let us calculate the contribution of a term such as the r.h.s. of Eq. (40). It contributes 
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to (3. IZ‘e shall call the prerious solution C!” and the nen term [J”. Then 

(f’ = ; J_” db” TV&.& 11”’ de” G,.& Jd” de”‘z3,.&, 
i -a -m 

. 8’ 
T I de”’ cc’, 

--d: 

de” C.&Z; 

TVe have included another integral because it is very similar, and the sum of the two integrals 
is actually easier to calculate than the individual terms. Kate that we now need expressions 

- . not only for J,.k,, and uC.nu, . but also c&.& and &.z;. \le approximate 

Lr<.ko 2 a;t i6’R , “7cx; 2 a-E-i6’B : (j8) 

where 6’ = v - n’ and n’ is the most singular harmonic in the above functions. Then. 
making the previous approximations for the other functions: and keeping only terms which 
contribute to the resonance EL 20. = 0. 

<j” 3: _I 
I 

@ (l-ti(Q,-f’)B’ 
2- 5 = v- 

( \,~(;~-T”i:Q.-:J)@~) (&is) 

1 o-o-b e:(6*24.)B 

2 23:2 C(E - 2Q,)(E’ ~ Q,) 
(j9) 

IVe have omitted constants of proportConality which are exactly the same as in [$“. The 

abow solution must be added to ii” 
obtain -,(L%j+) ‘. The result is 

coherentl>-. i.e. bcforr differentiating and squaring to 

Al! 

13 
- $’ x L 

ei(c-2Q*)a p+)’ 1 (iAO_ 

\.5a2(o-2Q,)Lsqp 2 6’ - Q. I 
The conrribution IO p -3,;, (a;l;:a?) ? therefore changes to 

( 1 a(32 

)+( 

1 qi” .2 

K3 af p:3 ac >: 

1 a-a- r-Q,-2 

l -~ 2 (Qau,)Z 6’ - cl* 1 

The contribution to the resonance 6 - 20. = 0: on the other hand. is 

4” - i3 (2) 3( L d-24o)8 ;cQ.u<)’ 1 (1.0~ 1 
J26 2jo - 20,) ! 6 -~ Q. 2 6’ - 0.j (62) 

The proportionality factor is the same as before, In the main text. the strengths Il.=, of 
the resonances 6 = mQ, = 0 were unchanged by t,he transformation 0, - -0, (only 111~ 



resonance denominators changed). and so the resonance widths were equal. Here, the terms 
in a-a- hare opposite signs in Eqs. (60) and (62): and so the resonances E 5 2Q. = o no 

longer have equal width. 

We therefore see that the additional terms in the solution for < can cause the resonances 

6 + mQ, = 0 to have unequal width. The example chosen involved the 

Eq. (5): and applied only to the resonance S = 2Q., 

bm term in 

but the conclusion obviously holds 

more generally. Unfortunately, it is also necessary to introduce additional lattice dependent 
parameters such as (I- and a_. 
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